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A B S T R A C T  

We show that dimensional theoretical properties of dynamical systems 
can considerably change because of number theoretical peculiarities of 
some parameter values. 

1. I n t r o d u c t i o n  

In the last decades there has been enormous interest in geometrical invariants 

of dynamical systems especially in the Hausdorff dimension of invariant sets like 

attractors, repellers or hyperbolic sets and ergodic measures on these sets. A 

dimension theory of dynamical systems was developed and nowadays the Haus- 

dorff dimension seems to have its place beside classical invariants like entropy or 

Lyapunov exponents.** 

There are two main principles that form a kind of a guideline through the 

dimension theory of dynamical systems. The first states the identity of the 

Hausdorff and box-counting dimension of invariant sets. The second one is the 

variational principle for Hausdorff dimension which states that the Hausdorff di- 

mension of a given invariant set can be approximated by the Hausdorff dimension 

* Supported by "DFG-Schwerpunktprogramm - Dynamik: Analysis, effiziente Sim- 
ulation und Ergodentheorie'. 

** We refer to the book of Falconer [6] for an introduction to dimension theory and 
recommend the book of Pesin [17] for the dimension theory of dynamical systems. 
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of ergodic measures on these sets or in a stronger form states the existence of an 

ergodic measure of full Hausdorff dimension on an given invariant set. In many 

situations these principles are essential to determine the Hausdorff dimension 

of an invariant set and for relating this quantity to other characteristics of the 

dynamics like entropy, Lyapunov exponents and pressure. 

For conformal repellers we know that the identity of Hausdorff and box- 

counting dimension holds and that there exists an ergodic measure of full Haus- 

dorff dimension (see chapter 7 of [17]). For hyperbolic sets of diffeomorphisms 

the variational principle for Hausdorff dimension does not hold in general (see 

[13]). But again, if the system is conformal restricted to stable resp. unstable 

manifolds, there exists an ergodic measure of full dimension for the restrictions 

and the identity of box-counting and Hausdorff dimension of the hyperbolic set 

holds (see again chapter 7 of [17]). In the non-conformal situation there is no 

general theory this days that allows us to determine the dimensional theoretical 

properties of a given dynamical system. But there are a lot of results for special 

classes of systems that state that the variational principle or the identity of box- 

counting and Hausdorff dimension or both hold at least generically in the sense 

of Lebesgue measure on the parameter space (see for instance [5], [21], [15], [24], 

[23]). In this paper we focus on such classes of systems. 

We will show that in situations where there generically exists an ergodic mea- 

sure of full Hausdorff dimension, the variational principle for Hausdorff dimension 

may not hold in general because of a number theoretical peculiarities of some pa- 

rameter values (see Theorem 2.1 below). Furthermore, we will show that the 

identity of box-counting and Hausdorff dimension may drop because of number 

theoretical peculiarities in situations where this identity generically holds (see 

Theorem 2.2 below). Our example for the first phenomena is the Fat Baker's 

transformation and our example for the second phenomena is a class of self-affine 

repellers. Both classes of systems are very simple, but it seems obvious to us 

that the same phenomena appear as well in more complicated examples; also, 

this would be of course harder to prove. 

All our results are related to a special class of algebraic integers, namely Pisot-  

Vijayarghavan numbers* (in brief, PV numbers), and they are in some sense 

the consequence of a generalization of results of ErdSs [4], Garsia ([7], [8]) and 

Alexander and Yorke [1] on the singularity and dimension of conveniently con- 

volved measures which has been proved by Lalley [12]. We think that from the 

viewpoint of geometric measure theory and algebraic number theory this result 

* See Appendix B at the end of this work. 
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is interesting in itself (see Theorem 4.1 below). 

The rest of the paper is organized as follows. In section 2 we define the sys- 

tems we study, state our main theorems about these systems and comment on 

our results. In section 3 we introduce coding maps for our systems and find 

representations of all ergodic measures using these codings. In section 4 we de- 

fine a class of Borel probability measures associated with PV numbers (Erdhs 

measures), introduce a kind of entropy related to this measure (Garsia entropy) 

and state the main theorem about the singularity, the Garsia entropy and the 

Hausdorff dimension of Erdhs measures. The proof of Theorem 2.1 is contained 

in section 5 and the proof of Theorem 2.2 can be found in section 6. 

In Appendix A we collect some basic facts in dimension theory and in Appendix 

B we define PV numbers and present a table with examples of these algebraic 

integers. 

ACKNOWLEDGEMENT: I wish to thank Jhrg Schmeling who helped me a lot to 

find the results presented here. 

2. Bas ic  def in i t ions  and  m a i n  resul ts  

For/~ E (0.5, 1) we define the Fat Baker 's  t r a n s f o r m a t i o n  f~: ]R × [ -1 ,  1] -+ 

R ×  [-1 ,  1] by 

f ( f i x W ( 1 - / 3 ) , 2 y - 1 )  if y_>0,  ff,(x, Y) I ( f ~ x - ( 1  ~ ) , 2 y + l )  if y < 0 .  

This map was introduced by Alexander and Yorke in [1]. It  is called Fat Baker's 

transformation because if we set/3 = 0.5 we get the classical Baker's transforma- 

tion. 

It  is obvious that  the at t ractor  of fz  is the whole square [ -1 ,  1] 2 which has 

Hausdorff and box-counting dimension two. We always restrict f~ to its at tractor.  

Now we state our main result about the Fat Baker's transformation. 

THEOREM 2.1: I f  ~ C (0.5, 1) is the reciprocal of a P V  number, then the vari- 

ational principle for Hausdorff dimension does not hold for ([-1,  1] 2, f~), i.e., 

{dimH #: # f~-ergodic} < 2. 

Remark 2.1: Theorem 2.1 is an extension of the result of Alexander and Yorke 

[1] which states that  the Sinai-Ruelle-Bowen measures for ( [ -1 ,  1] 2, fZ) do not 

have full R~nyi dimension. 
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R e m a r k  2.2: It follows from [1] together with Solomyak's theorem about 

Bernoulli convolutions [22] that for almost all/3 E (0.5, 1) the Sinai-Ruelle-Bowen 

measures for ([-1, 1] 2, ft~) have full dimension. Thus our theorem shows that in 
situations where generically there is an ergodic measure of full dimension, the 

variational principle for Hausdorff dimension may not hold in general because 

of special number theoretical properties of some parameter values. As far as we 

know our theorem provides the first example of this type. 

Now we come to our second class of examples. For/3 E (0.5, 1) and T C ( 0, 0.5) 
we define two affine contractions on [-1, 1] 2 by 

T~'~ ( x , z )  = (/3x + (1 -/3),TZ + (1 -- T)), 

T~_'IT(X, Z) = (/3X -- (1 --/3), TZ -- (1 -- 7)). 

From [10] we know that  there is a unique compact self-affine subset AZ,~ of 
[-1, 1] 2 satisfying 

Ae,r = T~'r (Ae,~) U T~ir(A~,r) .  

Let T~,r be the smooth expanding transformation on 

T~'~ ([-1, 1] 2) U T_~r ([-1, 1] 2) 

defined by 

T~,~(x) = ( T ~ ' ~ ) - l ( x )  if x e T~'~([-1, t] 2) for i -- 1 , -1 .  

Obviously the set A~,~ is an invariant repeller for the transformation TZ,~. We 

call the system (A~,~, T~,~) a self-affine repel ler .  
Let us state our main result about the systems (Az,~, T~,~). 

THEOREM 2.2: Let /3 C (0.5, 1) be the reciprocal o f  a P V  number. For all 

T E (0, 0.5) we have dimH A~,r < dimB A~,r. Moreover, i f  T is suttlciently small  

there cannot be a Bernoulli  measure of  full dimension for the system (A~,~, T~,,). 

Remark 2.3: We know from [15] that for almost all/~ C (0, 5, 1) and all T C 

(0, 0.5) the identity 

log 2fl 
dimH A~,~ = dimB A~,~ - log 7 ÷ 1 

holds and that  there is a Bernoulli measure of full dimension for (At~,~ , T~,~). 

Thus Theorem 2.2 shows that dimensional theoretical properties of dynamical 

systems can considerably change because of number theoretical peculiarities. 
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Remark 2.4: The fact that the identity of Hausdorff and box-counting dimen- 

sion may drop because of number theoretical peculiarities was shown before by 

Przytycki and Urbanski [19] in the context of Weierstrass like functions. Pollicott 

and Wise [18] claimed (without proof) that the first statement of our theorem 

follows for small ~- from the work of Przytycki and Urbanski. We were not able 

to see that  this is true and thus wrote down an independent proof which gives 

explicit upper bounds on dimH AZ,T (see section 6). 

Remark 2.5: We would like to mention that another interesting class of self-affine 

sets (so called McMullen carpets) was analyzed by McMullen [14] and in a more 

general setting by Gatzouras and Lalley [9]. Their result shows that the identity 

of box-counting and Hausdorff dimension is not generic but exceptional for these 

sets. On the other hand, the existence of a Bernoulli measure of full Hausdorff 

dimension holds generally for McMullen carpets and allows the calculation of the 

Hausdorff dimension of these sets. Also, the construction of McMullen carpets is 

similar to the construction of the sets considered in our work. The dimensional 

theoretical properties of the two classes of systems are very different and number 

theoretical peculiarities do not play a role in the context of McMullen carpets. 

Remark 2.6: We do not know if there exists an ergodic measure of full Hausdorff 

dimension for the systems (A~,~, Tf~,~) and we cannot calculate dimH A~,~ in the 

case that /3 ¢ (0.5, 1) is the reciprocal of a PV number. The second statement of 

our theorem only shows that it is not possible to calculate dirnH Af~,r by means 

of Bernoulli measures in this situation. 

3. Coding  maps and representat ion of ergodic measures 

We first introduce here the symbolic spaces which we use for our coding. Let 

E = { -1 ,  1} z and E + -- { -1 ,  1} •°. By pr+ we denote the projection from E 

onto E +. With a natural product metric E (resp. E +) comes a perfect, totally 

disconnected and compact metric space. For u, v ¢ Z (resp. u, v E N) and 

to, t~ , . . . ,  t~ C {-1 ,  1} we define a cylinder set in E (resp. E +) by 

[t0,t~,..., t~]v := {(sk): sv+k = tk for k = 0 , . . . ,  u }  

The cylinder sets form a basis for the metric topology on E (resp. E+). The 

forward shift map a on E (resp. E +) is given by a((sk) )  -- (sk+l). The backward 

shift ~-1 is defined on E and given by a((sk) )  = (Sk-1).  By b p for p E (0, 1) 

we denote the Bernoulli measure on E (resp. E+), which is the product of the 

discrete measure giving 1 the probability p and - 1  the probability (1 - p). We 
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write b for the equal-weighted Bernoulli measure b °5. The Bernoulli measures 

are ergodic with respect to forward and backward shifts (see [3]). 

We are now prepared to define the Shift coding for the Fat Baker's transfor- 

mation ([-1,  1] 2, f~). Define a continuous map #~ from Z onto [-1,  1] 2 by 

o o  (x)  

#z(i) -- ((1 - ~) E ik/~k' E i-k(1/2)k)" 
k=0 k = l  

A simple check shows that 

fz  o ~r~(/) = ~rZ o a - l ( / )  Vi • E = (E\{(Sk): 3koYk < k0: Sk = 1}) U {(1)}. 

Note that if # is a a-invariant Borel probability measure on E we have #(E) = 1. 

From this fact, by applying standard techniques in ergodic theory it is possible 

to show that the map 

#~ > #~ := #o~'~ -I 

from the space of a-ergodic Borel probability measures on E is continuous with 

respect to the weak* topology and is onto the space of f~-ergodic Borel proba- 

bility measures on [-1,  1] 2. Moreover, the system ([-1,  1], f~, #~) is a measure 

theoretical factor of (E, a -1, p). 

Now we introduce a shift coding for the self-aiIine repeller (A~,T, TZ,T). Con- 

sider the homeomorphism 7rz,~: E + -+ AB,~ given by 

~rZ,~(/) = (1 - /~)  ikfl k, (1 -- T) ikTk • 
k=0 k=O 

It is easy to see that r~,~ o a = T~,T o a. Thus the system (A~,~,T~,~) is homeo- 

morph conjugated to (E, a) and the map 

--1 #,  > #~,~ :---- tt o 7rf~,r 

is a homeomorphism with respect to the weak* from the space of a-ergodic Borel 

probability measures on E + onto the space of T/~,~-ergodic Borel probability 

measures on AB,tau. 

4. Erdihs m e a s u r e s  and  Gars ia  e n t r o p y  

For/~ • (0.5, 1) define a continuous map from E + onto [-1,  1] by 

OG 

7r~(/) = (1 - /~)  E ik~k" 
k=O 
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Given a Borel probabil i ty measure u on E + we define a Borel probabil i ty measure 

on [ -1 ,  1] by u~ -- u o ~ 1 .  If  we choose the Bernoulli measure b p on E + for a 

p E (0, 1), then b~ is a self-similar measure which is usually called a Bernoulli 

convolution. There are many  results in the li terature about  Bernoulli convolu- 

tions and we cannot  cite all of them here. Instead we refer to the nice overview 

article by Peres, Solomyak and Schlag [16]. 

In our work we are not only interested in Bernoulli convolutions but  in all 

measures uZ where u is a a invariant Borel probabil i ty measure E + and /3 E 

(0.5, 1) is the reciprocal of a P V  number  (see Appendix  B). We call a measure of  

this type an E r d S s  measure. 

Now we introduce a special kind of entropy related to Erd6s measure. Wha t  we 

do here is generalize the approach of Garsia ([7], [8]) for Bernoulli convolutions 

to all ErdSs measures. Let ~ , Z  be the equivalence relation on E + given by 

n - - 1  n - - 1  

/ ~,~,~ ~ Ca E ikflk = E jk/3k 
k = 0  k = 0  

and define a par t i t ion 1],,~ of E + by II , ,~ = E + / ~ n , ~ .  Recall tha t  entropy of a 

par t i t ion II  with respect to a Borel probabili ty measure u on E + is 

Hv(II)  = - E u ( P ) l o g u ( P ) .  
P c H  

We denote the join of two part i t ions H1 and II2 by 111 V H2. This is the par t i t ion 

consisting of all sections A A B for A ¢ II1 and B ¢ 112. It  is easy to see tha t  

I]n,~ V a--n(IIm,B) is finer than  the part i t ion 1],+m,~ and hence the sequence 

Hv(YI,,,f~) is sub-additive for a shift invariant measure u on E +. We can thus 

define the G a r s l a  e n t r o p y  G~(L,) for a shift invariant Borel probabil i ty measure 

u on E + by 

aB(t ,)  :=  lira H,,(Hn,/~) _ inf H " ( H " ' e )  
n----+ ~ n n n 

The limit exists and is equal to the infimum since the sequence H~(IIn,~) is sub- 

additive, Another  simple consequence of the sub-addit ivi ty of this sequence is 

tha t  the map 

is upper-semi-continuous with respect to the weak* topology on the space of a 

invariant Borel probabil i ty measures on E+.  

We are now prepared to state the main  theorem about  ErdSs measures and 

Garsia entropy which is essentially based on the work of  Lalley [12]. 
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THEOREM 4.1: Let  fi E (0.5, 1) be the reciprocal o f  a P V  number.  For all a- 

ergodic Bore/probabil i ty measures v on E + the following equivalence holds: 

L, E is singular ¢:~ GE(v ) < - l o g f i  ¢:~ dimH y~ < 1. 

Moreover, the set o f  a-ergodic measures Borel probabili ty measures u on ~,+ 

such that  v E is singular is open in the weak* topology and contains the Bernoulli  

measures b p for p C (0, 1). 

Proof'. From Proposition 3 of [12] we know that 

aE(.) 
dimg v E < -- log----f 

and from Proposition 5 of [12] we have 

v E singular => dimH v E < 1. 

Now note that dimH v E < 1 obviously implies the singularity of ~E" Thus we get 

the equivalence stated in Theorem 4.1. 

Now choose a singular ErdSs measure ~E" We have GE(~) < logfi -1. By 

upper-semi-continuity of G we get G~(v) < log fi-1 and hence dim v~ < 1 for all 

v in a hole weak* neighborhood of ~. Thus the set {v: v E is singular} is open in 

the weak* topology. 

It has been shown by ErdSs [4] that  the equal-weighted Bernoulli convolution 

b E is singular if/3 E (0.5, 1) is the reciprocal of a PV number and the argument 

has been extended to all Bernoulli convolutions in Proposition 2 of [12]. | 

R e m a r k  4.1: Using the result of Erd6s [4] about the singularity of the equal- 

weighted Bernoulli convolution bE, Garsia [7] proved G E (b) < - log ft. From this, 

Alexander and Yorke [1] deduced that the R4nji dimension of b E is less than one. 

Remark 4.2: The PV case is exceptional. It was shown by Solomyak [22] that 

for almost all fi 6 (0.5, 1) the Bernoulli convolution b E is absolutely continuous 

with density in L 2. 

5. P r o o f  o f  T h e o r e m  2.1 

The proof of Theorem 2.1 follows from Theorem 4.1 and two propositions pro- 

viding upper estimates on the Hausdorff dimension of all ergodic measures #E 

for the Fat Baker's transformation rE- It can be found at the end of this section. 
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PROPOSITION 5.1: I f  I A is a shift  ergodic Borel probabil i ty  measure on E and 

E (0.5, 1), we have 

dimH #8 --~ 1+ _ G ~ ( p r + ( # ) ) / - -  log~ 

where pr+ denotes the project ion from E onto E +. 

Proo~ By Proposition A1 of Appendix A and the definition of the Hausdorff 

dimension of a measure, we have dimH #~ __ 1 + dimH p r x # ~  where p r x  denotes 

the projection onto the first coordinate axis. Just by the definition of the involved 

measures we have p r x # ~  = (pr+#) 8 and hence dimH #8 --~ 1 + dimH(pr+#)Z. 

The proposition follows now immediately from Proposition 3 of [12]. | 

PROPOSITION 5.2: I f  # is a shift ergodic Borel probabil i ty  measure on E and 

fl E (0.5, 1), we have 

dimH #8 <-- 1+ <_ h , ( a ) / l o g 2  

where h~ (o-) is the usual measure-theoret ic  entropy o f  the shift  (Z,  a, #). 

Proof." By Proposition A1 and the definition of the Hausdorff dimension of a 

measure, we have dimH #~ _< 1 + d i m H p r y # ~  where p r y  denotes the projection 

onto the second coordinate axis. By definition, we have p r y #  8 = #8 o p r y  I = 

# o #~1 o p r y  1. By the properties of the coding map #~ it is easy to check that 

this measure is ergodic with respect to the map f :  [-1, 1], ~ [-1, 1] given by 

2 y - 1  if y___0, 
f ( Y ) =  2 y + l  if y < 0 .  

Thus the Hausdorff dimension of p r y # 8  is well known (see [17]), 

hpry.~ (S) 
dimH p r y  #8 -- log 2 

Moreover, we know that ( [ - 1 , 1 ] , f ,  p r y # 8  ) is a measure theoretical factor of 

([-1, 1] 2, f~, #8) and that  this system is a factor of (E, a, #). Hence we get by well 

known properties of the entropy (see [3]) h p r v t ~ ( f )  <_ h , ( a ) ,  which completes 

the proof. | 

Proo f  o f  Theorem 2.1: From Theorem 4.1 and the upper-semi-continuity of G~ 

we get G~(pr+#) / log l~  -1 _~ cl < 1 for all # in hole weak* neighborhood U of b 

in the space of a-ergodic Borel probability measures on E. Hence by Proposition 



276 J. NEUNH~,USERER Isr. J. Math. 

6.1, dimH/2~ < c1+1 < 2 holds for all # in U. On the other hand, we have by well- 

known properties of the measure theoretical entropy, hu (a)/ log 2 < c2 < 1 on the 

complement of U (see [3]). From Proposition 6.1 we thus get dimH #Z _< c2+1 < 2 

for all # in the complement of U. Putting these facts together we obtain 

dimH tt~ < max{c1, c2} + 1 < 2 = dimH[--1, 1] 2. 

But we know that all ergodic measures for the system ([-1, 1] 2, fZ) are of the 

form/t~ for some a-ergodic Borel probability measures p on E, and the proof is 

complete. I 

6. P r o o f  of  T h e o r e m  2.2 

The proof of Theorem 2.2 has a lot of ingredients, a formula for dimB h/~,~ found 

in [18], a formula for dimH ~ , r  found in [15], Theorem 4.1 and the following two 

propositions giving upper bounds on dimH A~,~. 

PROPOSITION 6 . 1 : I f / 3  E (0.5, 1) is the reciprocal of an P V  number and r E 

(0, 0.5), we have 

log(~--~PEIi,~,Z (~p)log/~/log -r) 
dimH A0,~- <_ nlog/3_l Vn > 1 

where IIn,~ is the partition o r e  + defined in section 4 and ~P denotes the number 

of cylinder sets of length n contained in an element of this partition. 

Proof: Fix a reciprocal of a PV number/3 E (0.5, 1) and ~- E (0, 0.5). Let n >__ 1 

and set 
log(~-]~PEii., ~ (~p)log/~/log r) 

Ur~ 
nlog/3 -1 

Consider the set of cylinders in E + given by 

C~ = {[s:s2...s,~]o: si E {-1 ,1}n, i  = 1 , . . . ,m} .  

Define a set function ~ on C,~ by 

~P(8)l°g'O/l°g'rfl T M  and 
= 

 m]0) = 

where ~, s l , . . . ,  s,~ are elements of {-1,  1} n and P(~) denotes the element of the 

partition H,~,Z containing the cylinder [S]o. 
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Note tha t  Cn is a basis of the metric topology of E + and tha t  ~ { - ~ , 1 } , ~  ~?([~]0) 

= 1 by the definition of u~. Thus we can extend r / to  a Borel probabil i ty measure 

on E + and ~/~,~ := ~/o rr/~,~-~ defines a Borel probabil i ty measure on AZ,~. 

Given m > 1 we set q(m) = [ m ( l o g f l / l o g r ) ] .  Given a ~i ~ { - 1 , 1 }  ~ for 

i = 1 , . . . ,  m we define a subset of A/~,~ by 

oo oo 

Ra~...a,~ = { ( E  si(l - [3)/3 i, E ti(1 - r ) r i ) :  si, ti E { - 1 ,  1} 
i = 0  i = 0  

( s ( i - ~ ) n , . . - , s i n - ~ ) = s i  i = l , . . . , m  and 

( t ( i - 1 ) n , . . . , t i n - ~ ) = s i  i = l , . . . , q ( m ) } .  

We see tha t  R ~ . a  m is "almost" a square in AZ,~ of side length /3 m~. More 

precisely we have 

(i) e~/3 mn <_ diamRal...am <_ e2/~ mn 

where the constants cl, c2 are independent  of the choice of ~i. 

Now let us examine the rjZ,~ measure of the sets R~ 1 ..... ~ , .  

Assume tha t  {i ~n,/~ si for i = q(m) + 1 , . . . ,  m where ~n,/~ is the equivalence 

relation introduced in section 4. The rectangles rr~,r([~l . . .  ~q(m)[q(m)+~... tm]0) 

are all disjoint and lie above each other  in the set Ra~...~m. Hence we have 

rh~,r (R&...~m) >_r/( U 71"/3,T([81' '  " S q ( m ) t q ( m ) + l  " • "/m]0)) 
{i~n,i38i i=q(m)T1,...,m 

= Z {m]o). 

Using the fact a ~,~,e ~ ~ ~P(~) = ~P({) ~ ~([a]o) = ~([~o), this last expression 

equals 

m 

l-I,(Pd0) 
i = 1  

where 

E 1 
t~n ,Bs l  i=q(m)Tl,. . . ,m 

m 

= I I  
/ = 1  ~P(si) 

Ylim__l ~p(,~i)log/~/log "r 

E 
t 'i ~ n  ,B.~i i = q ( m ) + l , . . . , m  

l-I q(m) ~p(~/) 
i = 1  

n u  n ~ 

l l i = l  I~ \ ~]  
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Now fix an e > 0. We use the sets Ra~...a= to construct a good cover of A~,r in 

the sense for Hausdorff dimension. To this end set 

We have an upper bound on the cardinality of Rm. If R E Rm then rh~,~(R ) > 

/~mn(u,+e) and since rh~,r is a probability measure we see that  

(2) card(Rm) </~--~-(u~+0.  

Now let R(M) = [.Jm>_M Rm. We want to prove that  R(M) is a cover of A~,, for 

all M > 1. 

For _s = (Sk) E E + we define the function Cm by Cm(_S) = Cso...sm~-l" In 

addition, we need two auxiliary functions on E+: 

1-L:o ~f((8(~_~)~,..., ~_~))v~ 
fro(8--) = lr[q(rn)l/=0 ~P((8(i-1)n'''"Sin-1)) 1/q(m)' 

q(m) ) 1/q(m)(log/~ log r--q(m)/m) 
gm(8-)-~ ( i~=l ~P((s(i-1)n,'-.,Sin-l)) 

/ 

Since 1 < ~P(~) < 2 n we have 1 < gm(S_) ~_ 2 nO°g~/l°gr-q(m)/m). Thus by the 

definition of q(m) we have gin(s_) > 1. Moreover, we have limm---~fm(S_) >_ 1 
t 

because [Ii=0 ~P((si_ln,..., siu-1)) 1/t >_ 1 Vt >_ 1. 
A simple calculation shows Cm(_S) = (f,~(_s)) l°g~/l°~gm(s_). The properties of 

f and g thus imply 

l imm--~bm(_S) > 1 V _s E E +. 

This will help us to show that  R(M) is a cover of A~,~. For all s -- (sk) E Z + there 

is an ra _> M such that  ¢,~(_s) _> ~'~¢ and thus 7~Z,~(s) E R~ o ..... ~ , _ 1  E R(M). 
Since ~rZ,~ is onto A~,~ we see that  R(M) is indeed a cover of AZ,~. 

We are now able to complete the proof. For every c > 0 and every M E N we 

have 

E (diamR)U"+2~= E E (diamR)U"+2~ 
RER(M) m>M RERm 

<_(1) E E (c~flmn)~"+2~= E card(Rm)(c2flmn)u~+2* 
m>_M RERm rn>M 

<(2) _u~ +2e V "  zm.~. 
- c 2  A . ~  

m>M 
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The  last expression goes to zero as M ----+ 0. By the definition for Hausdorff  

dimension we thus get dimH Ae,~ < un + 2e and, since e is arbitrary,  we have 

dimH Ae,r _< un. | 

Remark  6.1: Some ideas we used here are due to the proof  of McMullen's 

theorem on self-atfine carpets  [14] by Pesin in [17]. 

Now we use propert ies  of PV  numbers to get the following estimate: 

PROPOSITION 6.2: I f  fl E (0.5, 1) is the reciprocal of  a P V  number and 7 C 
(0, 0.5), we have 

~N E N Yn > N l°g(~Pen"'~(~P)l°ge/l°g~) 1og(2/3/T) < 
n log/3 -1 log( l /T)  " 

Proof: Fix/3. Define 7r~ from ~+  to I - l ,  1] by 7rn((sk)) ~-1 = Y]k=O Sk(1--/3)/3 k and 
n - 1  let bn = boTrn ~. Let ~(n) be the number  of distinct points of the form ~ k = 0  + ( 1 -  

/3)/3 k and w(n) be the minimal distance between two of these points. Furthermore,  

denote the points by x -~, , i = 1, . . .  , ~(n) and let P~ be the corresponding element 

in N~,e. 

Since bz is singular, we have VC E (0,1) Ve > 0 3 disjoint intervals 

(al ,  b l ) , . . . ,  (a~, b~) with 

~__,(bt - at) < e and be(O ) > C where O := (a/, bz). 
/=1 /=0 

Without  loss of generality we may assume be(a/) = be(b/) = 0 for 1 = 1 , . . . ,  u. 

It is obvious tha t  the discrete distr ibution bn converges weakly to bo. Thus we 

have 3nl(e,  C) Yn > nl(e,  C): b,~(O) > C. We now expand the intervals a little 

bit, so tha t  their length is a multiple of w(n). 

k/,~ := max{k: kw(n) <_ at}, 

k/,n := rain{k: b/<_ kw(n)}, 

Since w(n) > 0 we have 

at,n :-= kl,nW(n), 

b/,n := [~/,nW(n). 

~n2(e, C) > nl(e,  C) Vn > n2(e, C): (a/,n,bz,~) disjunct for 1 = 1 , . . . , u  

and 

u u 

Z ( b / , n  - a/,N) < ¢  and bn(O) > C where 0 = U(a/,~,b/,,~). 
/=1 l=0 
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Let ~(n) be the number  of distinct points x~ in 0 .  Since in one interval (at,n, bt,n) 
there are at most  kt n - kt,,~ points x .n , ~, we have w(n) i (n )  < ~. But  we know from 

Lemma 1.6 in [7] tha t  there is a constant  ~ > 0 such that  w(n)  > 5/3n and hence 

~(n) ~_ c/3 -n  and i(n) _~ ec/~ - n  

for some constant  c > 0. Since b(P~) = ~P~/2 '~ it follows from b , (O)  > v tha t  

there is a subset I-~In,/3 of IIn,z with ~(n) elements such tha t  

E ~P >- C2n" 

PEPi,,,Z 
Now we est imate 

PEIIn,~ 

~ (Tt) 1--10g/3/l°g T (pC~in~ ~t~)E , -\ log/3/log r 

(~p)log/3/log 7" 

+ (~(n) - ~(n))l-l°g/3/l°gr( E ~p) lOg/3/logr 

((eC)l-- log/3/ log ' r  ..~ c l - - log /3 / log ' r ( ]  _ c ) log /3 / log- r )  < 1. 

For all n > n~.(e, C) we have 

log(2/3/~') < + 
log( l /T)  n log/3-1 

log(Epcr~. ,  ~ (~p)log/3/log ~) 

n logf1-1  
log((ec) l-log/3/log ~ + cl-log/3/log ~ (1 - C) l°g/3/log ~) 

The  last te rm in this sum is negative and hence our proof  is complete. | 

P r o o f  of  Theorem 2.2: From [18] we know tha t  the box-counting dimension of 

A/3,~ is given by log(2f l /T) / log( l /T) .  Thus Proposi t ion 6.1 and 6.2 immediate ly  

imply dimH A/3,r < dimB A/3,r if 13 E (0.5, 1) is the reciprocal of a PV  number.  

Now choose ~ and C such tha t  

<_ (~e/3- ,~)~- log ~/~og ~ 2n log ~/~og,- + (c/~ - ,~)~-~og ~/tog ~ ((1 - C ) 2 ) "  ~og t~/~og 

=/3 ,*0og ~/ log  , - -  ~) 2n log ~ / log  ,- ((~e) ~- l°g ~ / log  ~ + c l - log  ~ / l o g ,  (1 - C )  l°g ~ / log  ~).  
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This is the first statement of Theorem 2.2. Now the second statement remains 

to be proven. The following dimension formula for the Bernoulli measures ~,~ 

on A#,~ is a corollary of Theorem II of [15], 

d i m H ~ T  p l o g p +  ( 1 - p ) l o g ( 1  - p )  + (1 - log/3~ 
' = log T log 7- ] dimH 4 "  

Thus we have, by Theorem 4.1, dimH ~,~ < 1 for all p C (0, 1) if/~ C (0.5, 1) is 

the reciprocal of a PV number and T is small enough. But, on the other hand, 

we have dimH A/~,r ___ 1 since the projection of A#,~ on the first coordinate axis 

is the whole interval [-1,  1]. This proves the second statement of our Theorem 

2.2. | 

Appendix A: Basic facts in dimension theory 

In our work we denote the Hausdorff dimension of a set Z C R q by dimH Z and 

the box-counting dimension (Minkovsky dimension) by dimB Z. The Hausdorff 

dimension of a Borel probability measure # on Rq is given by 

dimH # := inf{dimH ZIp(Z)  = 1}. 

We refer to the books of Falconer [6] and Pesin [17] for the definition and the 

interpretation of these quantities. We summarize some basic properties of the 

dimensions in the following proposition. 

PROPOSITION AI:  For all Z C g{q we have: 

(1) dimH Z < dimB Z. 

(2) I f I  is an interval then dimH(Z × I) = dimH Z + 1. 

(3) I f  f is Lipschitz then dimH f ( Z )  <_ dimH Z. 

Appendix B: Pisot-Vijayarghavan numbers 

A Pisot-Vijayarghavan number (in brief, PV number) is by definition an 

algebraic integer whose algebraic conjugates all lie inside the unit circle in the 

complex plane. Salem [20] showed that the set of PV numbers is a closed subset 

of the reals and that 1 is an isolated element. 

In our context we are interested in numbers/3 C (0.5, 1) such that  fl-1 is a PV 

number. We list some examples including all reciprocals of PV numbers with 

minimal polynomial of degree two and three and a sequence of such numbers 

decreasing to 0.5. 
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T a b l e  1. Reciprocals of P V  numbers 

x 2 + x - 1 (x/5 - 1)/2 

x 3 + x 2 + x - 1 0.5436898.. .  

X 3 -}- X 2 - -  1 0 .754877 . . .  

x 3 + x - 1 0.6823278.. .  

x 3 - x 2 + 2x - 1 0.5698403.. .  

x 4 - x 3 - 1 0.7244918.. .  

x n + x n - i  . . .  + x - 1 rn > 0.5 

Impor t an t  properties of P V  numbers are tha t  their powers are exponentially 

near integers (see [4]) and tha t  the number  of distinct points of the form 

n-1 k /~-n O(1) (see [19]). Finally, we ~-]k=0 ±/~ is given by + [7] and ment ion tha t  

there is a book devoted to Pisot  and Salem numbers  [2]. Certainly the reader will 

find much more information about  the role of these numbers in algebraic number  

theory and Fourier analysis in this book  than  we have provided here. 
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